THE EFFECTS OF SIZE AND DONOR ATOMS OF MACROCYCLIC POLYAMINES BINDING TO ${\rm Mg}^{2+}$ AND ${\rm Ca}^{2+}$ *Department of Medicinal Chemistry, Hiroshima University School of Medicine, Kasumi Hiroshima 734 †Department of Chemistry, College of General Education, Hirosaki University, Bunkyo, Hirosaki 036 New macrocyclic polyamines L^2-L^5 have been synthesized to develop sequestering agents selective for Na⁺, K⁺, Mg²⁺ and Ca²⁺ ions in aqueous solutions. 18-membered hexadentate ligands L^2 and L^3 show specificity toward Ca²⁺, whereas a 16-membered pentaamine with an amine branch (L^4) bind only to Mg²⁺. Currently we have been studying saturated polyamine macrocycles to reveal their versatile properties. ¹⁾ Among the properties physiologically useful is crown ether (polyether macrocycle)-like ligating ability: thus 18-membered hexaamine (L^1) can accomodate hard metal ions K^+ and Ca^{2+} in aqueous solutions. ²⁾ In order to develop more selective and hence physiologically more practical chelating agents for Na^+ , K^+ , Mg^{2+} and Ca^{2+} we now have modified the basic structure of L^1 with various parameters such as donor atom and ring size, as shown by L^2-L^6 . A macrocyclic oxapentaamine L^2 and pentaamine L^6 as 5HBr salts were prepared by the method of Richman and Atkins.³⁾ Other polyamine derivatives (as 5HBr salts except for L^4 which is isolated in free form) were synthesized according to a slightly modified procedure by Tabushi et al.⁴⁾ All of the new compounds L^2-L^5 gave satisfactory elemental analysis, mass spectra and nmr data. Metal complex formation of these macrocycles were studied using a pH-metric titration method. Aqueous solutions (50 ml) of ligand-to-metal ion ratio 1 (with $\rm L^2$, concentration 5 x 10^{-4} M): 66.6 (CaCl $_2$), or 1 ($\rm L^4$ and $\rm L^5$, concentration 10^{-3} M): 33.3 (CaCl $_2$ and Mg(ClO $_4$) $_2$) were titrated three times with an aqueous solution of NaOH or [NEt₄][OH] (either gave an identical result) at 25°C and I=0.1 M (NaClO₄). Typical titration curves are shown in Figures 1 and 2. The titration curves of pentaamines L⁵ and L⁶ in the presence of the metal ions did not show any pH depression to indicate no M-L interaction. The complexation data were analyzed using the formulae previously derived for pentaamines (n=5, $e\cdot g\cdot L^2$ and L³) and hexaamines (n=6, $e\cdot g\cdot L^4$) 2). $$\alpha(\alpha_{\rm H})_{\rm L} - \beta_{\rm H}[{\rm L}]_{\rm total} = {}^{K}_{\rm ML} (^{n}[{\rm L}]_{\rm total} - \alpha) [{\rm M}^{2+}]$$ (1) Here $$\alpha = [{\rm H}^{+}] + \alpha[{\rm L}]_{\rm total}$$ $$= ^{n}[{\rm ML}^{2+}] + ^{n}[{\rm L}] + (^{n} - 1) [{\rm HL}^{+}] + (^{n} - 2) [{\rm H}_{2}{\rm L}^{2+}] + \cdots + [{\rm H}_{n-1}{\rm L}^{(n-1)+}]$$ (2) $$(\alpha_{\rm H})_{\rm L} = [{\rm L}]_{\rm uncomplexed} / [{\rm L}]$$ $$= 1 + [{\rm H}^{+}] {}^{K}_{1} + [{\rm H}^{+}]^{2} {}^{K}_{1} {}^{K}_{2} + \cdots + [{\rm H}^{+}]^{n} {}^{n}_{1} {}^{K}_{2} \cdots {}^{K}_{n}$$ (3) $$\beta_{\rm H} = ^{n} + (^{n} - 1) [{\rm H}^{+}] {}^{K}_{1} + (^{n} - 2) [{\rm H}^{+}]^{2} {}^{K}_{1} {}^{K}_{2} + \cdots + [{\rm H}^{+}]^{(n-1)} {}^{K}_{1} {}^{K}_{2} \cdots {}^{K}_{(n-1)}$$ (4) $$[{\rm L}]_{\rm total} = [{\rm L}]_{\rm uncomplexed} + [{\rm ML}^{2+}]$$ (5) α = the number of base added per mol of ligand and ${\rm K_{ML}}$ is 1:1 complex formation constant Fig. 1 Titration curves of $L^2 \cdot 5H^+$ without (a) and with Ca^{2+} (b) at $[L^2] = 0.5 \times 10^{-3} M$ and $[Ca^{2+}] = 33.3 \times 10^{-3} M$ at I = 0.1 M and $25^{\circ}C$ Fig. 2 Titration curves of L⁴ without (c) and with $Mg^{2+}(d)$ at [L⁴] = 1.0 x 10⁻³ M and [Mg²⁺] = 33.3 x 10⁻³ M at I = 0.1 M and 25°C The (mixed-mode) protonation constants K_i were determined potentiometrically under the same conditions: 9.48, 9.29, 7.74, 3.65, 1.0 (L^2); 9.63, 9.05, 7.56 (L^3); and 10.64, 9.37, 2.0 (L^4). Other relevant data were previously reported. L^2 , 5) The results (Table) show that the macrocyclic hexaamine derivatives L^2 , L^3 and L^4 have a distinct trend to bind to the alkaline earth metal ions. The most interesting of all is the 16-membered macrocycle with a n-butyl amine branch L^4 , which specifically sequester Mg^{2+} ion. This selective recognition of Mg^{2+} over Ca^{2+} is not known with other previous chelating agents and would be extremely useful in biological applications. Another fact that either of 18-membered hexaamine L^1 , | Metal ions | ligand | | | | | | | |------------------|--------------------------------|----------------|-------|----------------|----------------|----------------|---------------------------| | | $\mathbf{L^{1}}^{-\mathbf{a}}$ | L ² | r_3 | L ⁴ | L ⁵ | r _e | [18]-crown-6 ^C | | Na ⁺ | no | no | no | no | no | no | 0.8 | | K ⁺ | ca. 0.8 | no | no | no | no | no | 2.03 | | Mg^{2+} | no | no | no | 2.5 | no | no | no | | Ca ²⁺ | 2.5 ^b | 2.30 | 2.70 | no | no | no | 0.5 | Table. 1:1 Complex Formation Constants log K_{MT} at I=0.2 M and 25°C. 14-membered tetraamine homologue L^5 , or 16-membered skeleton macrocycle without the amine branch L^6 negligibly interacts with Mg^{2+} ion is very instructive in designing new Mg^{2+} -selective chelating agents which demands proper ring size, donor atom numbers and an amine branch. ## References - 1) E. Kimura, Kagaku no Ryoiki, 35, 865, (1981) (in Japanese). - 2) M. Kodama, E. Kimura and S. Yamaguchi, J. C. S. Dalton, 1980, 2536. - 3) J. E. Richman and T. J. Atkins, J. Am. Chem. Soc., 96, 2268 (1974). - 4) I. Tabushi and T. Yoshino, Tetrahedron Lett., 12, 1049 (1977). - 5) M. Kodama and E. Kimura, J. C. S. Dalton, 1978, 1081 - 6) R. M. Izatt et al., J. Am. Chem. Soc., 98, 7620 (1976). (Received March 17, 1982) a Reference 2. b at 35°C. c Reference 6.